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Abstract 

 

In this project an attempt has been made to adopt an LQR controller design approach for PITCH axis stabilization of 3DOF Helicopter System. The 

presentation in this report is not limited to only design a controller for the stabilization of PITCH axis model of 3DOF Helicopter but at same time 

it shows good performance. Some useful basic control systems concept related to Riccaati equation, controllability of the system and PID 

controller have been also presented to understand the content of the project. The report first develops a transfer function and state space model 

to represent the PITCH axis dynamics of 3DOF Helicopter system and then LQR controller design steps are explained in brief.  

The investigated state feedback controller design technique is an optimal design method and it is directly applicable to unstable pitch axis model 

of 3DOF Helicopter. 

To show the effectiveness of the investigated method, the report also demonstrates the comparative studies between LQR and PID controllers. The 

results of the closed loop system performance with LQR controller and PID controller separately are also shown. 

 
1.Introduction 

 

3DOF Helicopter System (shown in Fig. 1.1) is composed of the 

base, leveraged balance, balancing blocks, propellers and some 

other components. Balance posts to base as its fulcrum, and the 

pitching. Propeller and the balance blocks were installed at the two 

ends of a balance bar. The propeller rotational lift, turning a balance 

bar around the fulcrum so pitching moves, using two propeller 

speed difference, turning a balance bar along the fulcrum to do 

rotational movement. Balance the two poles installed encoder, used 

to measure the rotation axis, pitch axis angle, in the two propeller 

connecting rod installed an encoder, which is used to measure 

overturned axis angle. Two propellers using brushless DC motors, 

provide the impetus for the propeller. By adjusting the balance rod 

installed in the side of the balance blocks to reduce propeller motor 

output. All electrical signals to and from the body are transmitted 

via slip ring thus eliminating the possibility of tangled wires and 

reducing the amount of friction and loading about the moving axes. 

Preparation of the experimental guidance on the purpose is to tell 

users how to design a controller, to control the helicopter in 

accordance with the desired angle and speed of 

movement.

 
Figure 1.1: 3 DOF Helicopter systems 

 
The theory of optimal control is concerned with operating a 

dynamic system at minimum cost. The case where the system 

dynamics are described by a set of linear differential equation and 

the cost is described by a quadratic functional called LQ problem, 

one of the main results in the theory is that solution is provided by 

the LQR, a feedback controller. First, we make a detail analysis and 

modeling on 3DOF helicopter from its mechanism and features and 

get its modeling motion equations by the knowledge of physics. 

From the analysis of the model, the system is with the problem of 
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non-linear and state interference. First, we get the linear state space 

through linearity of the system, and then we use the theory of LQR 

to get the optimal state feedback controller from the linear state 

space. 

 

1.2 Motivation 

 

The motivation for doing this project was primarily an interest in 

undertaking a challenging project in an interesting area of research. 

I found the 3DOF Helicopter system as an appropriate area of 

research of my interest, and using LQR controller design methods 

for checking its controllability and robustness was my contribution 

in this research paper. LQR controller is usually used in industry 

especially in chemical process and aerospace industry. LQR problem 

is one of the most fundamental and challenging control problems 

and  

inthis method; controller is very easy to design and also increases 

the accuracy of state variable by estimating the state. It takes care 

of the tedious work done by the control system engineers in 

optimizing the controllers. However the engineer needs to specify 

the weighting factor and compare the result with the specified 

desired goals. This means that the controller synthesis is an iterative 

process, where the engineer judges to produce optimal controllers 

through simulation and computation and then adjusts the weighting 

factor to get a controller more in line with the specified design 

goals this computing and simulation work for controller synthesis, 

motivated us to work on this project. 

 

1.3 Objectives 

 

Design and simulation of LQR controller for pitch axis stabilization 

of 3 DOF helicopter system (using MATLAB). 

 

2. Mathematical Modelling 

 

It is composed of the base, leveraged balance, balancing blocks, 

propellers and some other components. Balance posts to base as its 

fulcrum, and the pitching. Propeller and the balance blocks were 

installed at the two ends of a balance bar. 

The propeller rotational lift, turning a balance bar around the 

fulcrum so pitching moves, using two propeller speed difference, 

turning a balance bar along the fulcrum to do rotational movement. 

Balance the two poles installed encoder, used to measure the 

rotation axis, pitch axis angle, in the two propeller connecting rod 

installed an encoder, which is used to measure overturned axis 

angle. 

Two propellers, using brushless DC motors, provide the impetus for 

the propeller. By adjusting the balance rod installed in the side of 

the balance blocks to reduce propeller motor output. All electrical 

signals to and from the body are transmitted via slip ring thus 

eliminating the possibility of tangled wires and reducing the amount 

of friction and loading about the moving axes. 

Three differential equations to describe the dynamics of the system. 

A simple set of differential equations is developed as follows:
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2.1 Pitch axis 

Consider the diagram in Fig.2.1 Assuming the roll is zero, then 

the pitching axis torque by two propeller motors lift the F1 and 

F2. Therefore, the pitch propeller axis total lift Fh＝F1＋F2.When 

the lift Fh is greater than the gravity G Helicopter rise. Instead 

the helicopter dropped. Now, assuming zero roll, the differential 

equation is:

 

Figure    2.1: Pitch axis dynamics 

   ̈ =             (     )               (2.1) 

   ̈ =     (     )                     (2.2) 

Where, 

  is the moment of inertia of the system about the pitch 

axis,  =     
  +     

 . 

  is the mass of balance blocks. 

  is the total mass of two propeller motor. 

  and   are voltages applied to the front and back motors resulting 

in force    and   . 

  is the force constant of the motor /propeller combination. 

  is the distance from the pivot point to the propeller motor. 

  is the distance from the pivot point to the  balance 

blocks.Ignoring Tg in equation 3.2.2 we get 

   ̈=       (2.3) 

Now, Taking Laplace transform of (2.2.3) we get: 

                          
  ( ) =      ( ) 

 
 ( )

  ( )
 = 

    

   
 
 

 

Substituting the value of   =12N/V,   =0.88m,   =1.8145kg.  in the 

above equation,we can get the transfer function of 3 DOF helicopter 

system. 

 ( )

  ( )
= 

    

  
 

This equation gives the pitch transfer function of 3 DOF. 

 

2.2.State Space Modelling of Pitch axis for 3DOF: 

We know that: 

 ̇    ̇                                                           (2.10) 

  ̇  ̇                                                  (2.11) 

 ̈  l1V1 c/Je  + l1V2 c/ Je                          (2.12) 

 ̈  lpV1 c/Jp  +    l1V2 c/Jp                        (2.13) 

 ̇   l1p/Jt                                                         (2.14) 

Assuming that : 

 ̇                                                      (2.15) 

 ̇                                                    (2.16) 

Now we have to find A and B matrix for 3DOF Helicopter system 

using the above seven linear differential equation: 
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So we have the linearized equation of above state-space A and B as: 

[
 
 
 
 
 
 
 ̇
 ̇
 ̈
 ̈
 ̇
 ̇

 ̇]
 
 
 
 
 
 

  =      

[
 
 
 
 
 
 
 
 
 ̇
 ̇
 
 
 ]
 
 
 
 
 
 

  +  [
  
  

] 



International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013                                                            1401 
ISSN 2229-5518 

 

IJSER © 2013 

http://www.ijser.org 

3.Reserach Methodology            

3.1 LQR controller design method 

The LQR optimal control principle is, by system equations: 

 ̇= AX + Bu      

Determine matrix K that gives the optimal 

Control vector: u (t) = -K*x(t)                                                                                           

Such that   the performance index is minimized: 

J = ∫ (    
 

 
     )   

In which Q is positive definite (or semi -positive definite) hermitian 

or real symmetric matrix R is positive definite hermitian or real 

symmetric matrix. 

 

 

Fig. 3.1: Optimal LQR controller diagram 

The second term on the right of the equation is introduced in 

concern of energy loss. Matrix Q and R determine the relative 

importance of error and energy loss. Here, it is assumed that the 

control vector u(t)  is unbounded.  

Weighting Matrices selection 

One way of expressing the performance index mathematically is 

through an objective function of this form: 

J =∫         ∫       
 

 

 

 
 

For Simplicity we assume Q and R as Diagonal matrix. Thus the 

Objective J reduces to : 

J =     
        

          
        

  

Here, the Scalars q1...,qn, r....,rm  can be looked upon as relative 

weights between different performance terms in the objective J. 

The key design problem in LQR is to translate performance 

specifications in terms of the rise time, overshoot, bandwidth, etc. 

into relative weights of the above form. There is no straightforward 

way of doing this and it is usually done through an iterative 

process either in simulations or on an experimental setup. Once 

the matrices Q and R are completely specified, the controller gain 

K is found by solving the Riccati equation. 

[    
  

   

   
  ]                    (3.1) 

U1 and U2 are the maximum acceptable value of the input voltages. 

And matrix Q can be found using Bryson’s rule:Q 

=

[
 
 
 
 
 
 
         
         
         
         
         
         
         ]

 
 
 
 
 
 

 

Where according to Bryson’s rule: 

Q11 is1/ maximum acceptable value of (pitch angle) 2 

Q22 is 1/ maximum acceptable value of (roll angle) 2 

Q33 is 1/ maximum acceptable value derivative of (pitch angle) 2 

Q44 is 1/ maximum acceptable value of derivative of (roll angle) 2 

Q55 is 1/ maximum acceptable value of (travel rate) 2 

Q66 is 1/ maximum acceptable value of (damping ratio) 2 

Q77 is 1/ maximum acceptable value of (ϒ) 2 

Substituting the above values: 

Q =

[
 
 
 
 
 
 
 
         
         

     ̇     
    ̇     

         
         

         ]
 
 
 
 
 
 
 

 

 

3.2 PID controller design approach pitch axis of 3DOF Helicopter 

system 

The PID control scheme is named after its three correcting terms, 

whose sum constitutes the manipulated variable. The proportional, 

integral, and derivative terms are summed to calculate the output of 

the PID controller.  
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Figure 3.2: PID controller 

As seen in Fig.2.2 the different terms associated with the controller 

and its operations are being explained in detail below. The block 

contains the three different parameters namely Proportional, Integral 

and derivative. The final form of the PID algorithm is: 

 ( )     ( )    ∫  ( )   
 

 
  

 

  
 ( )                     (3.0) 

Where,  =Proportional Gain,  =Integral Gain, 

  =Derivative Gain, e =Error, t =Instantaneous time 

Proportional term 

The proportional term produces an output value that is proportional 

to the current error value. The proportional response can be 

adjusted by multiplying the error by a constant called the 

proportional gain constant. A high proportional gain results in a 

large change in the output for a given change in the error. If the 

proportional gain is too high, the system can become unstable. 

Integral Term 

The contribution from the integral term is proportional to both the 

magnitude of the error and the duration of the error. The integral in 

a PID controller is the sum of the instantaneous error over time and 

gives the accumulated offset that should have been corrected 

previously. The accumulated error is then multiplied by the integral 

gain and added to the controller output. The integral term 

eliminates the residual steady-state error that occurs with a pure 

proportional controller. 

 

 

Derivative Term  

The derivative of the process error is calculated by determining the 

slope of the error over time and multiplying this rate of change by 

the derivative gain. The magnitude of the contribution of the 

derivative term to the overall control action is termed the derivative 

gain. The derivative term slows the rate of change of the controller 

output. Derivative control is used to reduce the magnitude of the 

overshoot produced by the integral component and improve the 

combined controller-process stability. 

Pitch PID Controller 

The Pitch axis model is given by equation (2.3): 

    ̈        

Where, V1+V2 = Vs 

We design the PID controller of the form as follows: 

      (    )      ̇     ∫(    )                     (3.1) 

ɛis the actual pitch angle, ɛ is the desired pitch angle 

Now substituting the values we get: 

    ̈         (    )      ̇     ∫(    )        (3.2) 

Taking Laplace transform, the closed loop Transfer function is given 

by : 

   ( )  
          ( )           ( )             ( )

 
       (    )

 
 

 ( )

  ( )
= - 

                 

                                
                   (3.3) 

 

4.ResultAnalysis 

4.1 Controllability of the system 

A  system is  said  to be controllable at time t, if it  is  possible  by 

means  of an unconstrained control vector  to transfer  the  system 

from any  initial  state x(t) to any  other state  in a  finite  interval  

of time.  In fact, the conditions of controllability may govern the 

existence of a complete solution to the control system design 

problem. The solution to this problem may not exist if the system 

considered is not controllable. Although most physical systems are 
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controllable, corresponding mathematical models may not possess 

the property of controllability. Then it is necessary to know the 

conditions under which a system is controllable.  

4.1.1 Complete State Controllability of Continuous-Time Systems:  

Consider the continuous-time system. 

 ̇= AX + Bu        (4) 

Where: 

x = state vector (n-vector),u = control signal (scalar) , 

A = n X n matrix, B = n X 1 matrix 

The system described by Equation  (4.0) is  said  to be state 

controllable at t  =  to if  it is  possible to construct  an 

unconstrained  control signal  that  will transfer  an initial  state to 

any final  state in a  finite time interval  to t0≤t≤t1,. If every state is 

controllable, then the system is said to be completely state 

controllable.  

We now derive the condition for complete state controllability. 

Without  loss  of generality, we can assume  that  the  final state is  

the  origin  of  the  state space  and that  the initial time  is  zero. 

The solution of equation (4.0) is: 

X(t) =    X(0) + ∫   (   )  ( )  
 

 
(4.1)Applying the definition of 

complete state controllability: 

X(  ) = 0 =     X(0) + ∫   (    )  ( )  
  
 

  (4.2)                        

Or,We know that: 

X(0) =   ∫       ( )  
  
 

           (4.3) 

     ∑   ( )     

   
               (4.4) 

Substituting the equation (4.4) in (4.3) we get: 

X(0)= ∑      

   
 ∫   ( ) ( )  

  
 

(4.5) 

Let us put,∫   ( ) ( )  
  
 

  =     

The equation (4.5) becomes: 

X(0)  =  ∑      

   
    

=     [B  AB       B][
  

 
    

]           (4.6) 

If  the  system is  completely  state controllable, then, given any 

initial state x(O),This requires that  the  rank of  the  n  X  n  matrix 

be ‘n’. 

[B  AB       B] 

From this analysis, we can  state the  condition for complete state 

controllability  as fol1ows:The system given by Equation (4.0)  is 

completely  state controllable if  and only if  the  vectors B, AB,  . .  .  

.  An-1Bare linearly independent, or the n X n matrix is of rank n. 

[B  AB       B] 

The  result  just  obtained  can  be extended  to the  case where  

the control  vector u  is r-dimensional. If the system is described by 

 ̇= AX + Bu 

Where u is an r-vector, then it can be proved that the condition for 

complete state Controllability is that the n X nr matrix. 

[B  AB       B] 

B of rank n, or contain n linearly independent column vectors. The 

matrix 

[B  AB       B] 

Is commonly called the Controllability matrix. 

Controllability for Pitch axis dynamic model of 3 DOF Helicopter 

system 

We have a state space model of the helicopter system as follows: 

A 

[
 
 
 
 
 
 
       
       
       
       
            
       
       ]

 
 
 
 
 
 

 

  

[
 
 
 
 
 
 

  
   

            
               

   
   
   ]

 
 
 
 
 
 

 

Using MATLAB the controllability matrix of the system is obtained, 

M= 
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[
 
 
 
 
 

                        
                           

                        
                           

                             
                        
                             ]

 
 
 
 
 

 

The rank of the above matrix M is 7 which is equal to order of the 

system matrix A[MATLAB]
.  

Therefore the system is controllable. 

 

4.2 Open loop response for pitch axis 

The differential equation for pitch axis dynamics from equation (2.3) 

is given by: 

   ̈ =     (     )               

Ignoring Tg in the above equation we get: 

   ̈=        

Now, Taking Laplace transform of we get: 

                             
  ( ) =       ( ) 

 

                      
 ( )

  ( )
 = 

    

   
 
 

Substituting the value of   =12N/V,  =0.88m,  =1.8145kg.  in the 

above equation,we can get the transfer function of 3 DOF helicopter 

system. Finally the open loop transfer function is: 

                                 
 ( )

  ( )
= 

    

  
 

 

 

        

 

 

 

 

                  Figure 4.1: Open loop response  

 The Pitch axis model of Helicopter system is unstable as it gives  

unbounded output for the bounded input signal. It is shown in the 

figure 4.1 

4.3 State feedback controllerof Pitch axis model for Helicopter 

system: 

The plant state space model is already explained in section 2.2.4 

and it follows that 

  

[
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[
 
 
 
 
 
 
 
 
     
     
    

  

    

  
    

  

     

  
  
  
  ]

 
 
 
 
 
 
 
 

 

The weighting matrices Q & R are selected based on the theory 

which is explained in the section 3.1.  The Matrices Q and R are 

finally chosen by the equations 3.1 and 3.2. 

  

[
 
 
 
 
 
             

            
            
            
            
             
           ]

 
 
 
 
 

 

  [
     
     

] 

Now using the MATLAB command:[K S E] =LQR (A, B, Q/1000, and 

R), the state feedback gain matrix and closed loop pole of the 

system are given by the matrices K and E respectively:  

[
                                          
                                              

] 

                             
                                             
                              

Here, all the closed loop poles (Eigen values) of the system are 

either lying in the left half of the s-plane or on the imaginary axis, 

therefore our designed system is stable. 

Natural frequency and damping ratio of the closed loop system is 

also found using MATLAB code:[Wn,Z,P]=damp(A-B*K)and we 

found that response  for the 2nd order system for each value of 

natural frequency (Wn) and damping factor (Z) are acceptable. It is 

shown in the following figure.

 

Figure   4.2:   Response for diff. Wn and Z 

4.4 Pitch PID Controller using the values of state feedback gain K 

The state feedback gain matrix K is given by [Section 4.3] 

  [                                          
                                              

] 

And we can also write the above Matrix K  as: 

  [
                     

                     
] 

And full state feedback results in a controller those feedback two 

voltages: 

[
  

  
]   [

                     

                     
]   

  [
                     

                         
] 

           (    )       ̇       (4.7)      

Now comparing the result with equation (3.1): 

            (    )      ̇     ∫(   )̇ 

Now comparing the above two equations, the gains we obtain from 

LQR design can still be used for pitch controller as follows: 

                  

                  

                  

4.4.1 Simulation results 

Using equation 3.3 the closed loop transfer function of the system is 

given by: 

 ( )

  ( )
= - 

                 

                                
 

Now, substituting the values Kc=12, l1=0.88, Je= 1.8145, Kep= -

3.7192, Ked= -1.2168 and Kei= -1.4906, we got: 

 ( )

  ( )
= 

                

                                   
 

The above transfer function is obtained using extracted values Kep, 

Kei and Ked from designed state feedback gain matrix K as 

explained in section 4.3. 
0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d
e



International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013                                                            1406 
ISSN 2229-5518 

 

IJSER © 2013 

http://www.ijser.org 

The response of the above closed loop transfer function is obtained 

and it is shown in figure 4.3. 

 

Figure 4.3: Designed closed loop system response 

Now, substituting the values Kc=12, l1=0.88, Je= 1.8145,  

Kep= -2.0852, Ked= -0.8698 and Kei= -0.2, we get: 

 ( )

  ( )
= 

               

                                 
 

The response of the above closed loop transfer function is obtained 

and it is shown in figure 4.4. 

Figure4.4: Closed loop system response for reference PID value 

4.4.2 Real time system response 

The real time simulation is done using Helicopter PID control 

diagram [6] 

 

Figure 4.5:3DOF Helicopter MATLAB Real Time Control Diagram 

Double click the “Pitch PID” block to set pitch PID parameters. 

 

Figure 4.6: Pitch PID block diagram 

 

Double click the “Kp” block to set proportional parameter of pitch 

PID as the simulation results, and double click “OK” to save 

parameters. 

 

Figure 4.7: Kp Block 

Double click the “Ki” block to set integral parameter of pitch PID as 

the simulation results, and double click “OK” to save parameters 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d
e



International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013                                                            1407 
ISSN 2229-5518 

 

IJSER © 2013 

http://www.ijser.org 

 

Figure 4.8: Ki Block 

Double click the “Kd” block to set derivative parameter of pitch PID 

as the simulation results, and double click “OK” to save parameters. 

 

Figure 4.9:Kd Block 

Case 1: System response for 35 degrees (reference) pitch angle 

 

Figure 4.10: Tracking for 35 degree 

Result: We found that system is stable and tracking the reference 

input succesfully. 

Case 2: System response for 45 degrees: 

 

Figure 4.11: Tracking for 45 degrees 

Result: In this case also system is stable and tracking the input 

signal. 

Case 3: System response for 55 degrees:- 

 

Figure 4.12: Tracking for 55 degrees 

Result: The system is stable and tracking the reference signal. 

4.6 Comparative studies between LQR and PID controllers 

The PID controller parameters Kp, Kd and Ki have been found using 

LQR state feedback gain matrix K [section 4.3] and then closed loop 

system performance analysed. The following time domain 

performance parameters are obtained. 
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Figure 4.13: Designed closed loop response 

Rise Time: 0.4291s,Settling Time: 4.8948sOvershoot: 14.6289%,Peak: 

1.1463,Peak Time: 1.0470s 

Again we have taken PITCH PID controller values and closed loop 

system response obtained which is shown in the figure 

Figure 4.14: Closed loop response of reference PID values 

Rise Time:0.6021s,Settling Time:7.9956s,Overshoot: 7.6368%Peak: 

1.0764,Peak Time: 1.3321s 

Conclusion: 

We observe that the system is giving better performance for the 

designed controller with respect to existing reference PID controller 

but performance is deteriorated only in terms of overshoot.  

5.CONCLUSION AND FUTURE SCOPE OF WORK 

5.1 Conclusion 

In this project an optimal design approach has been chosen to 

design a state feedback controller for PITCH axis model of 3DOF 

Helicopter system. First we developed the Mathematical model of 

3DOF Helicopter system and then stability & performance of the 

modelled system is carried out. 

The theory of LQR controller design has been investigated and a 

different approach based on Bryson rule has been also adopted to 

select the weighting matrices which are used in controller synthesis. 

The selected project is also demonstrated successfully in real time 

platform and it is followed by the comparison with existing design. 

Simulation analysis is also shown in the report. 

5.2 Future Work: 

In this project an LQR controller is synthesized for PITCH axis 

stabilization for 3 DOF helicopter systems and the same approach 

can be extended for Travel and Roll axes for the same system. 
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